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1. INTRODUCTION 

THE PROBLEM of convective heat transfer to the continuous 
cylinder moving through a heated pipe is of great industrial 
importance. One of the most frequent cases when this kind 
of heating is used for the technological process of so-called 
texturization (bulking) of synthetic fibres is solved here. 

The main process consists of imparting a false twist to a 
yarn consisting of individual filaments while it is heated in a 
pipe. The yarn is thereafter cooled and the previously 
imparted crimp is reset thus producing three-dimensional 
loops and yarn bulk. 

The solution of a similar problem was not found in the 
literature, even though in many papers [2-51 the heat transfer 
from yam to free space is described and in ref. [6] and a 
different problem with a similar initial condition is solved. 

The object of this note is to present an analytical solution 
of the equation of heat transfer from the heated pipe to 
the continuous cylinder moving by the axis of cylinder, for 
Re < 300 when the creation of the thermal and velocity 
boundary layers in the whole pipe can be supposed. The 
coefficient of heat transfer is determined from the calculated 
temperature function and the results are compared with 
experimental values. 

2. FORMULATION OF THE PROBLEM 
(Fig. 1) 

The twisted chemical yarn considered as a continuous 
cylinder of constant radius r, of constant temperature in 
the whole cross-section and finite thermal heat capacity is 
moving without vibrations with velocity v, along the axis of 
the straight heating isothermal pipe of inner radius R. The 
cavities between individual filaments of the fibre are char- 
acterized by the porosity coefficient /3 > 1, the thermal prop- 
erties of the fibre can be characterized by the average thermal 
capacity pc. The thermal properties of the air in the pipe are 
supposed to be constant. The stationary temperature field in 
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t 

I 

the pipe neglecting the dissipation heat, the axial part of heat 
transfer, the radiative heat transfer and the rotation of the 
yarn (the negligible influence of rotation of the yarn was 
confirmed experimentally [l]), is described by 

(1) 

where the function fI(z, r) is the difference between the tem- 
perature of the pipe wall and the temperature at (z, r) inside 
the pipe, a is the temperature conductivity of the air and 
v(r) is the velocity distribution in the pipe. Together with 
equation (1) the following boundary conditions must be 
satisfied : 

where C = r,cpv$/21 at the surface of the fibre, that is for 
r = r, (it expresses the equality of the heat penetration 
through the boundary layer to the surface of the yam and the 
heat accumulated by the yarn considering its finite thermal 
capacity), and for 

e(z, R) = 0 (3) 

at the pipe wall. Besides this the yam and the air at the 
beginning of the pipe are supposed to be of constant tem- 
perature 

O(O,r) = O,, for r, < r < R (4) 

and obviously 

O(co, r) = 0. (5) 

The velocity distribution calculated in ref. [l] 

v(r) = ‘$(R’-r’)+ v,+g$(R’-r,‘) 
> 

*:,“,~~n”, 
e 

was replaced by the approximate velocity distribution 

(6) 

enabling the transfer of the calculation of the temperature 
function to the solution of the Bessel equation. Both dis- 
tributions satisfy the same initial condition v(rJ = v, and 
yield the same average velocities. 

3. EXACT SOLUTION 

Particular integrals of equation (1) are anticipated to be 
of the form 

e,cz, r) = T,(r) e-+ (7) 
which automatically satisfies the physical requirement (5). 
Then T,,(r) fulfils the ordinary differential equation 

d’T,(r) 1 dT,,(r) v(r) 
dr’ +; dr 

- + yu,2r,(r) = 0 (8) FIG. 1 
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NOMENCLATURE 

a temperature conductivity (diffusivity) l.(r) velocity function (the velocity distribution) in 

A” coefficients of the temperature function the pipe 
expansion (18) .V transformed radial coordinate 

b constant (parameter) in equation (14) Y,,. Y, zero- and first-order Bessel functions of the 
c specific heat second kind 
C constant in equation (2) Z, I cylindrical coordinate (z-axis is identical with 

f”(x) transformed radial function the common axis of the cylinder and the 

9 gravity (acceleration of gravity) pipe). 
Jo, J, zero- and first-order Bessel functions of the 

first kind Greek symbols 
K constant (parameter) in equation (13) a coefficient of heat transfer 
1 length of pipe % parameter in equation (8) 
M exponent in the velocity function /i coefficient of porosity 

; 
radius of the cylinder (fibre) I. thermal conductivity 
radius of the pipe O(Z, r) temperature difference 

Re Reynolds number Y kinematic viscosity 

T,(r) radial part of the temperature function P density of the fibre polymer 

0, speed (velocity) of the fibre along the z-axis i”,, eigenvalues of equation (1 I ). 

dT,(r) 
__ = - CaiT,(r) for I = r, 

dr 

T.(R) = 0. (10) 

Introducing the substitution x = (r/rJm+*“*, equation (8) 
turns into the Bessel equation for the functionf,(x) = T,(r) 

where 

2X$, 11, 
5” =- 

&I m+2 a 

and boundary conditions (9) and (10) could be transformed 
to 

dL -=-_5,‘Kfn for x=1 
dx 

f,(b) = 0, b = r, 0 
where 

K = cp/Wm + 2) 
T-. (15) 

The general solution of equation (I 1) is the linear com- 
bination of the Bessel functions of the first and second kinds 
J,(&,x), Y,(&,x) the coefficients of which are determined 
from boundary condition (14). We obtain 

f.(x) = J&&)Y,(Lx)- Y,,(bL)J,(Lx). (16) 

Substituting this relation into equation (13), we obtain the 
transcendental equation 

+ S,flJ,(K) Y,(L) - Y,(KJJ,(S,)I = 0 (17) 

for the eigenvalues 5,. The general temperature function 
which solves equation (1) and satisfies proper conditions 
then becomes 

O(z, r) = O,, i A,&(x) ema:‘. 
n=J 

The determination of coefficients A, would be easy in the 
case of the orthogonality of eigenfunctions fn(x). However, 
it shows they are not orthogonal in the usual sense of the 
word since it holds that 

This difficulty caused by the inhomogeneous boundary con- 
dition (13) can be removed by using so-called generalized 
orthogonal properties [7]. 

Substituting for the derivatives df,(x)/dx and df,(x)/dx in 
equation (19) from equation (13), we have 

Using initial condition (4) together with equation (18) gives 

nc,A,fn(x) = I for I i Y -c b 

pL/m = 1. (22) 

Multiplying equation (21) by xjjJx) dx and integrating over 
the interval (1, b) and multiplying equation (22) by Kfm(l) 
and adding both results, we obtain 

+~f,(l).fm(l) (23) 
s 

According to equation (20) the only non-vanishing term in 
the series on the right-hand side of equation (23) is that for 
which n = m, so that 

s 

h 
xj;(x)dx+Kj;(l) 

(24) 

After the integration using boundary condition (I 7) and the 
Wronskian relation [8] 

JI(x)Yo(x)-JJ,(x)Y,(s) = ? (25) 
nx 
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Table 1 

r, x IO5 Rx103 r, 
Case (m) (m) (m s- ‘) 51 42 r3 

1 5.10 5.00 1 0.01411 0.04734 0.09935 
2 5.10 5.00 2 0.01558 0.06245 0.13142 
3 5.10 5.00 3 0.01672 0.07143 0.14997 
4 7.35 5.00 2 0.01877 0.09141 0.19162 

7.35 3.25 2 0.02159 0.18412 0.38370 
7.35 2.00 2 0.02532 0.36008 0.74304 

we obtain 

The tinal form of the temperature function is 

and at the surface of the cylinder 

~26) 

(27) 

(28) 

4. NUMERICAL RESULTS 

The eigenvalues 5, were obtained numerically by Newton’s 
method for six different cases differing from each other by 
the radius of the pipe and the yarn and by the speed of 
the yam. In each of these six cases three eigenvalues were 
determined. These are listed in Table 1. 

It has been found that series (18) converges very rapidly 
for z > 0.2 so that the temperature function is determined 
with suIhcient accuracy (for our purposes) by the first term 
of the series. 

As an illustration the values of the temperature function 
for case (4), 0.1 < z $ 1, r, < r < R were calculated. This is 
illustrated graphically in Fig. 2. 

From the value of the temperature function at the surface 
of the fibre on the upper end of the pipe the coefficient of 
heat transfer .Q was calculated by using the relation [1] 

FIG. 2. 

Table 2 

aal 
Case (W mm2 K’) (W m’yK-‘) 

1 130.6 110.8 
2 124.8 126.5 
3 115.6 144.7 
4 92.4 98.3 
5 115.0 127.4 
6 137.0 206.0 

uQp 

1.18 
0.99 
0.80 
0.94 
0.90 
0.67 

The heat transfer to the yam from the pipe wall was realized 
experimentally for the parameters mentioned in Table 1. The 
values of the heat transfer coefficients were calculated by 
relation (29) from the output temperatures taken from the 
original convection thenuometer [I]. 

The part belonging to the radiative heat transfer 
(amd = 14.7-16.7 W m-* K-’ [I]) was subtracted from the a- 
values obtained in this way and compared with theoretically 
calculated values. The results are summarized in Table 2. 

From Table 2 it is evident that the differences between the 
theoretical and experimental values of a extend from -20 
to 20%, which can be explained namely by replacing the real 
velocity profile by an approximate one except in the last case, 
where the influence of the turbulent heat transfer is apparent. 

1. 

2. 

3. 

4. 

5. 

6. 
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